Мир дикой природы на wwlife.ru
Вы находитесь здесь:Разное>>Мир дикой природы на wwlife.ru - Показать содержимое по тегу: Рыбы электрические


Американские биологи методом "генетической палеонтологии" выяснили, как у водных животных возникали электрические органы. Оказывается, в процессе эволюции они не менее шести раз появлялись у разных групп животных совершенно независимо друг от друга.

Электрический угорьЭлектрический угорь Профессор биохимии Висконсинского университета в Мадисоне Майкл Суссман уже около 10 лет изучает происхождение электрических органов. За это время он насчитал шесть основных групп рыб, обладающих этими приспособлениями и живущих в самом широком диапазоне экологических условий – от дождевых лесов Амазонии до океанского глубоководья. У каждой из этих групп электрические органы появились независимо от других, хотя во всех случаях они вели свое происхождение от обычных мышц.

"Было любопытно увидеть, что такие сложные структуры, как электрические органы, развивались совершенно независимо сразу в шести группах и использовали совершенно одинаковый генетический механизм, – отметил соавтор исследования, зоолог штата Мичиган Джейсон Галлант. – Сегодня с помощью геномики биологи начинают понимать, что эволюция творит аналогичные структуры из одних и тех же материалов, даже если сами организмы не слишком тесно связаны друг с другом".

Таким образом, все многообразие электрических органов, которые разные рыбы используют для связи, защиты, охоты и ориентации в пространстве, возникло из мышц благодаря использованию одних и тех же генов и клеточных путей.

Первым объектом исследований стал электрический угорь Electrophorus electricus, затем ученые секвенировали генетические последовательности представителей еще трех независимых групп рыб, имеющих электрические органы. "Наши результаты показывают, что не смотря на миллионы лет эволюции и значительные морфологические различия клеток электрических органов, в эволюции всех независимых групп были задействованы аналогичные факторы транскрипции и клеточные пути", – констатировала команда биологов.

Таксономическое разнообразие электрических рыб, входящих в эти шесть основных генетических групп, оказалось настолько велико, что Чарльз Дарвин в свое время даже использовал их в качестве примера конвергентной эволюции. Согласно этой концепции, у несвязанных между собой групп животных появляются сходные или близкие адаптации к той или иной экологической нише или одинаковым условиям среды.


Источник: PaleoNews


Опубликовано в Новости Эволюции

В водах Амазонии живут два вида электрических рыб, которых часто путают между собой, до того они похожи. Рыб зовут Brachyhypopomus walteri и Brachyhypopomus bennetti; это родственники, использующие электрические сигналы для общения и ориентации на местности. Внешне они, повторим, очень похожи, эволюционно принадлежат к одному роду, но при этом между ними есть одно важное различие: Brachyhypopomus walteri использует переменный ток, а Brachyhypopomus bennetti — постоянный.

B. walteri с переменным током и длинным хвостом (вверху) и B. bennetti с постоянным током и коротким хвостом (внизу) (фото John P. Sullivan / Cornell University Museum of Vertebrates). B. walteri с переменным током и длинным хвостом (вверху) и B. bennetti с постоянным током и коротким хвостом (внизу) (фото John P. Sullivan / Cornell University Museum of Vertebrates). Разнятся и электрические органы рыб: как пишут в ZooKeys зоологи из Корнеллского университета (США), у Brachyhypopomus bennetti электрический орган заметно больше, чем у Brachyhypopomus walteri. Кроме того, у «постоянного» Brachyhypopomus bennetti хвост короткий и толстый, а у «переменного» Brachyhypopomus walteri — длинный и тонкий.

Большинство электрических рыб используют переменный ток: считается, он помогает ещё и маскироваться от хищников. Меняющиеся импульсы делают электрических рыб невидимыми для тех, кто мог бы найти их по постоянному полю. Постоянный ток встречается у рыб гораздо реже: помимо Brachyhypopomus bennetti, им пользуется электрический угорь. Но все прочие Brachyhypopomus, кроме Brachyhypopomus bennetti, работают с переменным током. 

В 1999 году была выдвинута гипотеза о том, что в данном случае имеет место так называемая бейтсовская мимикрия, когда безобидный вид копирует некоторые черты опасного, как, например, мухи-журчалки имитируют внешность ос. Мощность разряда электрического угря достаточно велика, чтобы оглушить и жертву, и потенциального врага (при этом угорь способен «прощупывать» окрестности с помощью слабых разрядов), так что мимикрия под угря была бы вполне целесообразной.

Однако Джон Салливан и его коллеги полагают, что тут может быть другая причина. Там, где живут «постоянноточные» B. bennetti, от хищников спрятаться довольно сложно, и почти все рыбы, которых удалось поймать зоологам, имели на своих хвостах, так сказать, следы контакта с врагом. Хотя повреждённый хвост постепенно регенерирует, такие повреждения могли бы сильно осложнить жизнь B. bennetti, пользуйся они переменным током и будь у них длинный хвост.

У рыб с переменным током за вторую фазу отвечает хвост, и если его повредить, то электролокация и общение друг с другом станут невозможны. 

Получается, что B. bennetti попросту выбрали более надёжный генератор, который производит постоянный ток, но который зато нельзя повредить, схватив рыбу за хвост.

Впрочем, авторы работы не исключают, что тут могут работать оба объяснения: и то, что генератор переменного тока проще защитить от хищника, и то, что B. bennetti таким образом мимикрирует под опасного электрического угря.

 


Источник: КОМПЬЮЛЕНТА


Опубликовано в Новости Зоологии

Случайные статьи

  • 1
  • 2
  • 3
  • 4
  • 5
Предыдущая Следующая

Звероящеры дотянули до мелового периода в Японии

27-04-2016 Просмотров:7040 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Звероящеры дотянули до мелового периода в Японии

Японские палеонтологи описали новый вид мезозойских звероподобных рептилий, очень похожих на млекопитающих. Эти небольшие растительноядные терапсиды были, скорее всего, теплокровными и даже покрыты шерстью. Правда, до наших дней от них...

Новокаледонские вороны наладили производство крючков

24-12-2015 Просмотров:6749 Новости Зоологии Антоненко Андрей - avatar Антоненко Андрей

Новокаледонские вороны наладили производство крючков

Биологи установили камеры на новокаледонских воронов и узнали, что в природе они изготовляют «крючки», предназначенные для вылавливания личинок из опавших листьев. Новокаледонский воронОб этом говорится в статье британских ученых из Университета...

Грибы показывают муравьям, где умереть

11-05-2011 Просмотров:14411 Новости Микологии Антоненко Андрей - avatar Антоненко Андрей

Грибы показывают муравьям, где умереть

Биологи показали, как гриб управляет поведением муравья и «подбирает могилку» инфицированному насекомому. Теперь ученые озабочены поисками молекулярных механизмов и грибных генов, которые помогают муравьям умереть в нужном месте и в...

Цветы «настраивают» радужность своих лепестков под зрение пчел

26-02-2016 Просмотров:7375 Новости Ботаники Антоненко Андрей - avatar Антоненко Андрей

Цветы «настраивают» радужность своих лепестков под зрение пчел

Ботаники из Кембриджского и Бристольского университетов (Великобритания), под руководством профессора Беверли Гловера (Beverley Glover) и доктора Хизер Уитни (Heather Whitney) выяснили, что цветы «настраивают» радужность своих лепестков под зрение пчел,...

Найден новый вид из «недостающего звена» между динозаврами и птицами

30-10-2018 Просмотров:2861 Новости Палеонтологии Антоненко Андрей - avatar Антоненко Андрей

Найден новый вид из «недостающего звена» между динозаврами и птицами

Международная команда исследователей определила новый вид археоптерикса — он расположен эволюционно ближе к современным птицам, чем уже известные виды. АрхеоптериксДоктор Джон Наддс из Манчестерского университета и его коллеги провели первое в мире синхротронное исследование одного из 12 известных представителей...

top-iconВверх

© 2009-2025 Мир дикой природы на wwlife.ru. При использование материала, рабочая ссылка на него обязательна.